
1

ANYIK GUIDE

(v 2.0r8)

2

1. Upgrade Notes for Earlier Versions (1.x)

 Version 2.0 introduces new scripts with new names for every type of IK script, although
old scripts (if kept) may still work, it is strongly recommended to remove AnyIK folder completely
before downloading and importing AnyIK 2.0. You will need to remove old AnyIK scripts from your
GameObjects and add new scripts following this guide.

 We are aware that it could be frustrating to remove all the scripts and re-add them and
apologize for it. But we assure you it was not possible to cleanly upgrade scripts in 1.x version
while adding the feature that enables all the scripts to work simultaneously and accurately.

 Also with version 2.0 and forward we support (and require) only Animator component. Our
focus will be on humanoid characters but we will support non-humanoid characters as long as
they have an Animator component. (With v.2.0r2 an Animator relay script added which enables
users to have AnyIK scripts on one GameObject and the Animator component in another
GameObject. This is especially useful for dynamically created avatars which is not available on
scene at design time like UMA)

2. Introduction

 AnyIK provides scripts that enables you to define IK chains (AnyIKChainController) by the
character’s rig’s bones. Animator component is required but model can be humanoid or not. When
the model is humanoid, it is automatically detected by script and many of the settings will be
handled for you.

 AnyIK also provides seperate scripts for head look IK (AnyIKHeadLookController) and foot
placement IK (AnyIKFootPlacementController) operations. A character may only have one foot
placement script and one head look script but it may have as many AnyIKChainController scripts
as you need. With version 2.0 and up, scripts effect common bones of multiple chains without
causing inaccuracy to IK chains that has been processed before it. In other words, you may have
a chain from right hand to hip bone and another chain from left hand to hip bone, they will work
and find a suitable rotation for common bones (i.e. spine and chest) so both hands can reach or
stop as close as possible to their respective targets.

 This coordination is achieved by AnyIKBoneStructureCoordinator script that is
automatically added when any of the IK script is added to character. This script is very important
as it also defines the bone structure and bone limits by predefined templates. Currently MCS/DAZ,
Makehuman, Robot Kyle, iClone G6 and UMA bone structure templates are available. As for bone
limits, Unity default bone limit template and one slightly customized bone limit template is
available. You may also add your own custom templates. (See AnyIKBoneStructureCoordinator
section for details.). With version 2.0r3 an option added to bone structure coordinator namely “Do
not use bone structure template”. (This option will enable you to use a model which is not in the

list, quickly without defining a template)
Read more in BoneStructureCoordinator
section.

 When you imported AnyIK into your
project you’ll see a folder structure like this.

 In the SampleSceneFiles folder there
are two scenes. These scenes are provided
so you can have an idea on script settings
and have a working sample to follow.

3

 First scene demonstrates foot IK setup. When you run this scene, you’ll be able to point
and click around to move the character. The character is a Makehuman character with high heels
rigged to foot bones. The animations used are not for high heels, AnyIK is handling that part (you
can see the difference by disabling the heels option.)

 The other scene demonstrates head look and IK chains. Defined chains have a few
common bones (chest and spine namely). You can move around the target game objects and see
how the character reacts.

 The following section will explain all the settings on AnyIK scripts, so you can setup the
scripts from scratch.

 You may check out the tutorial page for an online and up-to-date version of this guide or
product page for videos.

3. AnyIK Scripts

a. AnyIKChainController

 This script is used to define an arbitrary IK chain starting at any bone. You may
add/remove bones to chain. You may define as many IK Chain as you like by simply adding

AnyIKChainController script to your character. To
add AnyIKChainController script click Add
Component on your character’s inspector
window, type “any” and select Any IK Chain
Controller from the list.

 This will add both AnyIKChainController and
AnyIKBoneStructureCoordinator to the
GameObject. Default values will be set and you
will need to select Limit Preset and Bone Structure
Preset that suits your model.

 The initial pose bone rotations differ from
model to model so for best results a preset file is
needed to store this information for each model. A
few presets are provided by AnyIK and it is
possible to add a custom template. (See
AnyIKBoneStructureCoordinator section for
details.)

 Initially AnyIKChainController script is added
to GameObject with no target and no bones
defined. Other properties are set to defaults.

 Keep in mind that you need at least 2 bones in the chain to see any movement.

 Enable IK, turns this IK chain on and off. Reset Bone Limits button resets minimum and
maximum bone limits for all bones defined in this script per the defined bone limit template.

 Name is randomly given when script is added, and can be changed afterwards. This name
is for distinguishing between added scripts and doesn’t have any other use.

 IK weight is the weight of the IK movement. If it is 1 then IK is fully processed, if it is 0 IK
is not processed at all.

4

 You can drag a game object to IK Target. This GameObject’s position will be where IK
chain targets.

 IK stop distance is where script will
consider target reached. It will not process
next IK iteration if target is in this range (unit
is meters).

 IK iteration count is the limit to how
many times the IK process will iterate. If target
is achieved (target is closer than defined stop
distance) on any iteration it will stop, if number
of iterations defined by this property are
processed and target is not achieved, it will
stop at current distance.

 Per iteration max angle defines how
much each bone is rotated every iteration.
Keep in mind that too small angles may cause
inaccurate targeting.

 Range visible defines the range in
meters where the script will be considered
disabled. If this is 0 script will be always
enabled. If non-zero then when camera is
further than this amount (in meters), script will
be considered disabled. This option will be
used with Filter IK By Camera Distance option
in AnyIKBoneStructureCoordinator script. If
that option is unchecked range defined here
will be ignored, IK will be processed.

 Adjust hips to reach target option,
when selected, changes vertical hips position
downwards when target is not reachable.
Bone count for reach check is used to calculate the reach. Maximum offset is the limit on how
much the hips can be moved down. Adjust hips for close targets only option restricts hips
movement so that it is processed only when target is in close proximity.

 If Match IK Target Rotation is checked IK chain’s first bone will try to match the rotation of
target transform. This rotation will be offset by the angles defined by IK target rotation offset value
(visible when selected).

 When Process rotation leftover is selected, if target rotation cannot be matched at the end
effector bone, leftover rotation (on bone’s direction axis) is passed to next bone.

 You can add new bones to the IK chain by clicking the “Add New Bone” button at the
bottom.

 You can select the first bone from the combo box if your character has a humanoid
animator. If not, then you’ll be able to drag your bone from hierarchy view to inspector. After first
bone, when you add a new bone to the chain, parent bone is automatically added to the chain.

 If you are using humanoid bones, default rotation restrictions will be set per the limit preset
defined in AnyIKBoneStructureCoordinator script.

5

 If your character’s animator is not humanoid default limits will be wide enough so there will
be no limits. You can always change rotation limits. Also, you may opt not to apply limits by
unchecking the axis above the limits.

 If you uncheck Process this bone option, no IK will be applied to that bone which will be
practically skipped.

 You may add as many bones as you like to the IK chain, but eventually you will be adding
hips (or parent game object of the hips). This is not recommended as it will rotate these game
objects and may lead to unexpected behavior.

 You may add multiple AnyIKChainController scripts to the same character. Every chain is
processed simultaneously. Common bones are processed mutually by chains and rotated
considering each chain affecting it.

b. AnyIKHeadLookController

 Head controller script handles head and eye “look at” function. More bones can be added
to head bone (i.e. neck, chest, spine)

 You may add only one head look script to a
GameObject by simply adding
AnyIKHeadLookController script to your character.
To add AnyIKHeadLookController script click Add
Component on your character’s inspector window,
type “any” and select Any IK Head Look Controller
from the list.

 This will add both AnyIKHeadLookController
and AnyIKBoneStructureCoordinator to the
GameObject. Default values will be set and you will
need to select Limit Preset and Bone Structure
Preset that suits your model.

 The initial pose bone rotations differ from
model to model so for best results a preset file is
needed to store this information for each model. A
few presets are provided by AnyIK and it is possible
to add a custom template. (See
AnyIKBoneStructureCoordinator section for
details.)

 Enable IK, turns this IK chain on and off. Reset Bone Limits button resets minimum and
maximum bone limits for all bones defined in this script per the defined bone limit template.

 Name is randomly given when script is added, and can be changed afterwards. This name
is for distinguishing between added scripts and doesn’t have any other use.

 IK weight is the weight of the IK movement. If it is 1 then IK is fully processed, if it is 0 IK
is not processed at all.

6

 IK target can be a regular game object in which case the target position is game object’s
position, or it can be a humanoid (target game object should have a humanoid animator). If target
has a humanoid animator Use Humanoid Target option becomes visible. If selected you’ll have
an option to select which humanoid bone to look at (i.e. Head, Right Hand, Left Foot etc.)

 IK iteration count is the limit to
how many times the IK process will
iterate. If target is achieved (target is
closer than defined stop distance) on
any iteration it will stop, if number of
iterations defined by this property are
processed and target is not achieved, it
will stop at current distance.

 Per iteration max angle defines
how much each bone is rotated every
iteration. Keep in mind that too small
angles may cause inaccurate targeting.

 Range visible defines the range
in meters where the script will be
considered disabled. If this is 0 script
will be always enabled. If non-zero then
when camera is further than this
amount in meters, script will be
considered disabled. This option will be
used with Filter IK By Camera Distance
option in
AnyIKBoneStructureCoordinator script.
If that option is unchecked, range
defined here will be ignored, IK will be processed.

 When follow target that can’t be faced option is selected head (and neck and eyes too)
rotation stays at the limits when target rotation cannot be achieved. When this is not selected,
head turns back to animation when rotation cannot be achieved.

 Follow tolerance angle is the tolerance after the point that character cannot face the target
anymore. When the tolerance is exceeded head look weight is lowered down to 0. This option is
available when follow target that can’t be faced option is not selected.

 When eyes enabled option is selected, defined eyes will follow IK target.

 Head is automatically added to IK chain (you need to define head bone transform if
animator is not humanoid). Additional bones can be added to chain. Whenever you click “Add
New Head Bone” button, parent bone of the current last bone will be added to chain (it goes like
Head, Neck, Chest etc.)

c. AnyIKFootPlacementControler

 Foot placement script handles foot placement of the character. It matches the ground
slope / height and adjusts the feet position and hip height accordingly. It also optionally rotates
the feet and toes to modify the animation for high heel.

 You may add only one foot placement script to a GameObject by simply adding
AnyIKFootPlacementController script to your character. To add AnyIKFootPlacementController

7

script click Add Component on your character’s inspector window, type “any” and select Any IK
Foot Placement Controller from the list.

 This will add both AnyIKHeadLookController and
AnyIKBoneStructureCoordinator to the GameObject.
Default values will be set and you will need to select
Limit Preset and Bone Structure Preset that suits your
model.

 The initial pose bone rotations differ from model to
model so for best results a preset file is needed to
store this information for each model. A few presets
are provided by AnyIK and it is possible to add a
custom template. (See
AnyIKBoneStructureCoordinator section for details.)

 Enable IK, turns this IK chain on and off. Reset Bone
Limits button resets minimum and maximum bone limits for all bones defined in this script per the
defined bone limit template.

 Name is randomly given when script is added, and can be changed afterwards. This name
is for distinguishing between added scripts and doesn’t have any other use.

 If adjust hips height by lowest foot is checked, hip is moved down by the amount from
lowest foot to ground level. So, every foot’s target point on the ground can be reached.
(recommended)

 If consider front and back ends of foot is checked, two more raycast are executed from
both ends of the foot. Highest y value is used, so for example if only the tip of the foot is into
the step, it moves target point to step’s level. When this option is not selected, more clipping will
occur with stair like floor.

 Hips vertical offset is applied to hips bone and moves all bones up or down. It’s for fine
tuning the animation height (for animations with too high or too low feet ground distance).

 Ground detection range affects the length of the raycasts. A raycast is cast from a point
this range higher than the foot position with raycast size of two times this range. In other words,
this range above and this range below the feet is checked for ground/floor.

 With layers to consider combobox you can select which layers are considered as floor.
Default is everything.

 Height to consider on ground is the sensitivity of the on-ground check. It may be adjusted
to fit the animation. This is the distance the foot is considered fully on ground when further than
this, leg IK weight is reduced by distance.

 Range visible defines the range in meters where the script will be considered disabled. If
this is 0 script will be always enabled. If non-zero then when camera is further than this amount
in meters, script will be considered disabled. This option will be used with Filter IK By Camera

8

Distance option in AnyIKBoneStructureCoordinator script. If that option is unchecked, range
defined here will be ignored, IK will be processed.

 Process heels option rotates the feet
and raises whole model by heel height to make
foot animation compatible with high heels
(rigged to foot bone fitting the model feet). This
option is to use the same walk / run animations
for heels. Angle and platform height can be
adjusted. You can decide if toes should be
rotated or not (usage depends on how tip of the
shoes are rigged)

 You also have legs and leg bones. If
you animator is humanoid, then left and right
leg is created with 3 bones each forming the
legs. If not, you can add and remove legs and
leg bones for each leg.

 In addition to bones and rotation limits
legs have following properties:

 Ankle height : Foot bone is usually at
ankle (at least it is with humanoid bones). So
IK target point must be higher than ground
level by ankle height so that foot sits on floor.
This property is essential so that the feet sit on
the ground perfectly. (This property is
autodetected)

 Ankle to front end : This option is used
to calculate raycast point from front end of the
feet. (if consider front and back ends of foot
option is not selected this is not used)

 Ankle to back end : This option is used
to calculate raycast point from back end of the
feet. (if consider front and back ends of foot
option is not selected this is not used)

 IK iteration count is the limit to how
many times the IK process will iterate. If target
is achieved (target is closer than defined stop
distance) on any iteration it will stop, if this
many iterations are processed and target is not
achieved, it will stop (at current distance).

 Per iteration max angle defines how much each bone is rotated every iteration. Keep in
mind that too small angles may cause inaccurate targeting.

 Toe bone is detected when animator is humanoid. If your model’s toe bones are connected
to separate toe bone then it is enough. Some models have 5 toe bones connected directly to foot
bone. Script autodetects the bones connected to foot and populate toe bone list. (These are
rotated per the rotate toe bones option for heels.)

9

d. AnyIKBoneStructureCoordinator

 As mentioned before when an AnyIK script is added to a GameObject, the bone structure
coordinator script is added automatically.

 Main purpose of this
script is holding the definition
of the bone structure and
default bone limits. Every
model has a different
orientation of the bones.
Because of this a preset is
used to hold this information.
Currently MCS/DAZ,
Makehuman, Robot Kyle,
iCloneG6 and UMA presets
are available. If your model
doesn’t conform to one of
these, you may create a
custom preset and use it.
Also with version 2.0r3 an
option added to bone structure coordinator namely “Do not use bone structure template”. (This
option will enable you to use a model which is not in the list, quickly without defining a template)
If this is selected the reference pose will not be the Unity muscle pose but the initial pose of the
model (which can be a T-Pose, A-Pose etc.). It is detected at game/scene start and used as
reference. When this option is selected a compatible bone limit template must also be selected.
Bone limits now have a “BS” (bone structure) or “No BS” (no bone structure) indication next to
their names. (Newly added “T-Pose (No BS)” bone limit template is a sample template roughly
compatible to Makehuman model. Limits may still apply to wrong axes. So, either change the
limits on inspector for each IK script or create a custom bone limit template applying to your model
and use the reset limits buttons. The latter is recommended.)

 The bone limit preset holds the default constraints of the bones. Default uses unity default
limits, “AnyIk Default” option is slightly modified unity defaults for better foot IK results.

 When you select your model, and hit configure button at the rig tab mapping settings will
open. Select Muscles and Settings tab to see Unity defaults.

You can see limits for every bone. Limits would be named differently but order of the limit will be
z, y, x. (Please note fully constrained axis will be skipped in this window)

 This muscle settings window will be useful for creating custom bone structure presets.
Because per the orientation of the bone axis names might be switched (for example z rotates x).
This will make the bone limits affect wrong axis. In presets, for every bone there is a definition of
axis mapping.

 Also, bone structure presets hold the initial pose rotations of each bone. This is needed to
process limits properly. The initial pose is considered the pose in muscles and settings window.

 A tool to generate the initial rotations for a given model is provided by AnyIK package. Go
to DefaultPositionDetector folder and open DefaultPositionDetectorScene. Drag your model as
the child of “DefaultPositionDetector” GameObject in the scene. Set the animator’s avatar
property to your model’s avatar on DefaultPositionDetector.

10

 When you hit play you should see that your model changes pose to initial pose as in
muscles and settings page.

 Now go to the console and copy the content of the log to some text file (you should select
the log line and copy the content from detail below). This text will be the content of
GetDefaultPoseLocalRotations() method of the custom preset script file.

 Go to AnyIK -> CustomTemplates folder and duplicate (ctrl d) the
SampleCustomBoneStructureTemplate file. Rename it to your liking and open it by a c# editor.
(Remember to set the class name in content to whatever you set as the file name) Replace the
contents of GetDefaultPoseLocalRotations() method by the text we created earlier (remember the
clean unity log’s last few lines that is automatically added by unity).

 Save the file. Now your preset is half ready. You need to set the content of
GetAxisConvertedVectorForHumanBone method too. Unfortunately, this is a manual process.
You need to set map every axis of every bone. As I said earlier musles window will guide you. If
you skip this, IK will work but bone limits will effect wrong axis mostly.

 When your custom preset is ready select Custom option from Limit Preset. This will reveal
a text box where you can type the name of your custom preset file. When you type the name
(exactly) and hit enter it should replace the class name with fully qualified name of it. Your preset
is in use now.

 Same routine is used when creating bone limit templates.

 Note : If you don’t want to rework GetAxisConvertedVectorForHumanBone method of the
bone structure preset you can leave it as is and instead create a limit preset that works with that
mapping. This is not ideal but should work.

11

e. AnyIKSceneCoordinator

 This script is most of the time not needed at all. All the coordination between scripts of a
character is done by AnyIKBoneStructureCoordinator already.

 But sometimes two characters need to use IK interactively with each other (like one
character reaches to another’s hand while that other character’s hand reaches for something
else).

 In this case scene coordinator processes these characters’ IK scripts together. This will
force IK movements accuracy.

 This script should be used when this rare need arises only.

 To enable this put AnyIKSceneCoordinator script on an empty GameObject in the scene.
Select Use scene coordinator option on the character’s AnyIKBoneStructureCoordinator in the
inspector (scene coordinator property will be revealed). Drag GameObject with scene coordinator
to scene coordinator property field.

f. AnyIKAnimatorRelay

 This script enables user to have AnyIK scripts on one GameObject and Animator of the
character on another GameObject. It is recommended to have AnyIK scripts on where your
character’s Animator is but sometimes it may not be possible.

 For example UMA creates the character dynamically at runtime and it’s Animator is not
available until character is initialized at runtime.

 Since animator may not be available
until runtime, when this script is added
to the GameObject, AnyIK scripts will
use the is humanoid value on this
script.

 Is runtime created option is used to
define if Animator component will be
available at runtime.

 If Animator is on another GameObject (not created at runtime) you may drag the game
object containing the animator to “Animator” field. If Animator is not available skip this one.

 GameObject with Animator can be used similarly if game object that will hold the Animator
is available but Animator itself will be available at runtime. If not skip this one too.

 If “Try to Find GameObject By Name” is checked when game is started script will search
the indicated name and get the Animator component on it. For example, the name of the game
object can be defined when an UMA character is created. (of course, the name must be unique)

 If you don’t have the name beforehand or name is not unique there is one other way to
set the Animator. You may get the AnyIKAnimatorRelay script and use the SetAnimator(animator)
method on it. This should initialize all AnyIK scripts with animator.

 Following is a sample code for UMA but the same technique could be for other models
that are created at runtime. The relevant code that you would need to add is marked.

12

using UnityEngine;
using UMA;
using AnyIKLibrary;

public class UMAMaker1 : MonoBehaviour
{
 public UMAGeneratorBase generator;
 public SlotLibrary slotLibrary;
 public OverlayLibrary overlayLibrary;
 public RaceLibrary raceLibrary;
 public RuntimeAnimatorController animController;
 private AnyIKAnimatorRelay animRelay;
 private UMADynamicAvatar umaDynamicAvatar;
 private UMAData umaData;
 private UMADnaHumanoid umaDna;
 private UMADnaTutorial umaTutorialDNA;
 private int numberOfSlots = 20;
 void GenerateUMA() {
 GameObject go = new GameObject("MyUMA");
 umaDynamicAvatar = go.AddComponent<UMADynamicAvatar>();
 umaDynamicAvatar.Initialize();
 umaData = umaDynamicAvatar.umaData;
 umaDynamicAvatar.umaGenerator = generator;
 umaData.umaGenerator = generator;
 umaData.umaRecipe.slotDataList = new SlotData[numberOfSlots];
 umaDna = new UMADnaHumanoid();
 umaTutorialDNA = new UMADnaTutorial();
 umaData.umaRecipe.AddDna(umaDna);
 umaData.umaRecipe.AddDna(umaTutorialDNA);
 CreateMale();
 umaDynamicAvatar.animationController = animController;
 umaDynamicAvatar.UpdateNewRace();
 go.transform.parent = this.gameObject.transform;
 go.transform.localPosition = Vector3.zero;
 go.transform.localRotation = Quaternion.identity;
 }
 void CreateMale() {
 var umaRecipe = umaDynamicAvatar.umaData.umaRecipe;
 umaRecipe.SetRace(raceLibrary.GetRace("HumanMale"));
 umaData.umaRecipe.slotDataList[0] = slotLibrary.InstantiateSlot("MaleEyes");
 umaData.umaRecipe.slotDataList[0].AddOverlay(overlayLibrary.InstantiateOverlay("EyeOverlay"));
 umaData.umaRecipe.slotDataList[1] = slotLibrary.InstantiateSlot("MaleInnerMouth");
 umaData.umaRecipe.slotDataList[1].AddOverlay(overlayLibrary.InstantiateOverlay("InnerMouth"));
 umaData.umaRecipe.slotDataList[2] = slotLibrary.InstantiateSlot("MaleFace");
 umaData.umaRecipe.slotDataList[2].AddOverlay(overlayLibrary.InstantiateOverlay("MaleHead02"));
 umaData.umaRecipe.slotDataList[3] = slotLibrary.InstantiateSlot("MaleTorso");
 umaData.umaRecipe.slotDataList[3].AddOverlay(overlayLibrary.InstantiateOverlay("MaleBody02"));
 umaData.umaRecipe.slotDataList[4] = slotLibrary.InstantiateSlot("MaleHands");
 umaData.umaRecipe.slotDataList[4].AddOverlay(overlayLibrary.InstantiateOverlay("MaleBody02"));
 umaData.umaRecipe.slotDataList[5] = slotLibrary.InstantiateSlot("MaleLegs");
 umaData.umaRecipe.slotDataList[5].AddOverlay(overlayLibrary.InstantiateOverlay("MaleBody02"));
 umaData.umaRecipe.slotDataList[6] = slotLibrary.InstantiateSlot("MaleFeet");
 umaData.umaRecipe.slotDataList[6].AddOverlay(overlayLibrary.InstantiateOverlay("MaleBody02"));
 umaData.umaRecipe.slotDataList[3].AddOverlay(overlayLibrary.InstantiateOverlay("MaleUnderwear01"));
 umaData.umaRecipe.slotDataList[5].AddOverlay(overlayLibrary.InstantiateOverlay("MaleUnderwear01"));

 }
 void Start()
 {
 animRelay = GetComponent<AnyIKAnimatorRelay>();
 GenerateUMA();
 }
 void LateUpdate()
 {
 if (animRelay.GetAnimator() == null)
 animRelay.SetAnimator(umaDynamicAvatar.gameObject.GetComponent<Animator>());
 }
}

